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Abstract: Delineating precisely the locations of individual neuronal cells in microscopic images is 
of great significance for the treatment of neurological disorders and neurodegenerative diseases. 
However, conventional methods for the instance segmentation of neuronal cells suffer from the 
limited accuracy, lack of automation, and time intensive processes. To address this challenge, we 
propose an R-CNN-based deep learning model for the segmentation of neuronal cells with a 
promising performance in this paper. The architecture of our model is the Cascade Mask R-CNN, 
which is a combination of the Mask R-CNN and Cascade R-CNN. In this model, a ResNeXt + FPN 
backbone with standard convolution and fully connected heads is utilized for the mask prediction, 
where the ResNeXt part of backbone is ResNeXt-152-32x8d. The model is pretrained based on the 
LIVEcell dataset, and subsequently trained using the dataset provided by Sartorius in a Kaggle 
competition. By a boost from the pseudo-label technique, our model can achieve a mAP@.5:.95 score 
0.338 on the private test set. Such a score locates at 36/1505 (top 3%) in the leaderboard of Sartorius 
- Cell Instance Segmentation competition, and can get a silver medal in this Kaggle competition. Our 
results could help the researchers measure the effects of neurological disorders more easily, and 
potentially accelerate the discovery and development of new drugs for the treatment of 
neurodegenerative diseases.  

1. Introduction 
Neurological disorders, which affect as many as one billion people worldwide, can lead to a range 

of symptoms and are a leading cause of death and disability across the globe [1]. As the review of 
neuronal cells via light microscopy is both accessible and non-invasive, the instance segmentation of 
neuronal cells in microscopic images plays a crucial role for the treatment of neurological disorders 
[2]. Therefore, effective methods to detect and delineate the locations of neuronal cells could help the 
researchers measure the effects of neurological disorders more easily. However, conventional 
segmentation methods have limited accuracy for neuronal cells and are usually time-intensive, leading 
to a great demand for an automated and valid approach to segment neuronal cells in microscopic 
images. 

On the other hand, computer vision techniques are undergoing a rapid development since machine 
learning has witnessed an unprecedented revolution in recent years [3-10]. In particular, deep 
convolutional neural networks (CNNs) are proven to have an incredible ability to automatically 
accomplish complicated tasks regarding medical images. A wide array of applications of CNNs have 
been reported in the fields of healthcare and medical-image processing, such as the diagnosis of skin 
cancer [11], identification of cardiovascular risk [12], and detection of pneumonia [13]. Therefore, 
CNNs are highly qualified to achieve the instance segmentation of neuronal cells with a promising 
performance. 

For that purpose, two representative CNN models based on the region-based convolutional neural 
network (R-CNN) are selected in this work: Mask R-CNN [8] and Cascade R-CNN [9]. The model 
architecture we use is the Cascade Mask R-CNN, which is a combination of these two representative 
models. In particular, a ResNeXt + FPN backbone with standard convolution and fully connected 
heads is utilized for the mask prediction, where the ResNeXt part of backbone is ResNeXt-152-32x8d 
[4, 6]. By using two datasets provided by Sartorius, this model reaches an mAP@.5:.95 score 0.338 in 
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the Sartorius - Cell Instance Segmentation competition [14]. Such score ranks 36/1505 (top 3%) in the 
Kaggle leaderboard [15], and can get a silver competition medal. 

The rest of the paper is organized as follows. Two datasets provided by Sartorius, including the 
LIVEcell dataset and the dataset in the Kaggle competition, are briefly introduced in Section 2. The 
mechanisms of ResNeXt, FPN, Mask R-CNN, and Cascade R-CNN are summarized in Section 3. In 
the following Section 4, the workflow of our model and corresponding training schedule are given in 
detail. The results and model performance are shown in Section 5. Finally, we draw a conclusion in 
Section 6. 

2. Data Description 
In this work, we use two datasets to train the Cascade Mask R-CNN model. These datasets are both 

provided by Sartorius, which is a famous international pharmaceutical and laboratory equipment 
supplier in Germany. One is the dataset in the Sartorius - Cell Instance Segmentation competition, the 
other is the LIVEcell dataset [16]. 

The competition dataset has 606 images in the training set and roughly 240 images in the test set (3 
samples is provided publicly, others are hidden in the Kaggle backend). In addition, 1972 unlabeled 
images are offered in this dataset. This dataset consists of three different kinds of neuronal cells, i.e., 
cort, astro, and shsy5y, where representative examples and corresponding masks are demonstrated in 
Figure 1. On the other hand, 9 kinds of neuronal cells are in the LIVEcell dataset, with 4184 images 
in the training set and 1664 images in the test set. All images in both datasets have the same pixel size 
704 × 520, with masks stored as run length encoded pixels. 

 
Figure 1: Representative images and corresponding masks of three  

different kinds of neuronal cells, cort, astro, and shsy5y, in the competition dataset. 
Moreover, the evaluation metric in this Kaggle competition is the mean average precision at 

different intersection over union (IoU) thresholds [14]. The IoU of a predicted mask and corresponding 
ground truth is given by: 

                             (1)  Pred  Target IoU
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In particular, the competition metric sweeps over a range of IoU thresholds from 0.5 to 0.95 with a 
step size of 0.05, at each point calculating an average precision value. For a given threshold value t, 
the precision value Pt is written as: 

                            (2) 

Where TP, FP, and FN denote the true positive, false positive, and false negative samples 
respectively. Then the average precision value of a single image is the mean of precision values at 
each IoU threshold. We denote this value as AP@.5:.95, which is calculated as: 

                       (3) 

After that, the overall metric mAP@.5:.95 in the competition leaderboard is the mean of AP@.5:.95 
taken over all images in the test set. 

3. Methods 
The crucial machine learning blocks in the architecture of Cascade Mask R-CNN are the ResNeXt 

[4], FPN (feature pyramid network) [6], Mask R-CNN [8] and Cascade R-CNN [9]. Hence, the 
mechanisms of these models will be briefly summarized in this section. 

 
Figure 2: (a) Comparison between the structures of ResNet and ResNeXt [4]. (b) Schematic diagram 
of the FPN architecture [6]. (c) Workflow of Mask R-CNN [8]. (d) The difference of structures in the 

second stage between Faster R-CNN and Cascade R-CNN [9]. 

3.1 ResNeXt and FPN 
The mechanism of ResNeXt is depicted in Figure 2a [4], which is an improved version of the well-

known CNN backbone ResNet [3]. As shown in the right of Figure 2a, aggregated transformations are 
adapted to the second convolution layer of each bottleneck block in ResNeXt, where the number of 
transformations is called as cardinality. The backbone we choose in this work is the ResNeXt-152-
32x8d, which is a ResNeXt network with layer depth = 152, cardinality = 32, and input channel 
dimension = 8. 

Feature maps extracted by the CNN backbone is processed by the FPN for the purpose of instance 
segmentation [6]. As demonstrated in Figure 2b, the architecture of FPN is a top-down structure with 
lateral connections for building high-level semantic feature maps at all scales. It has the inherent multi-
scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal 
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extra cost. Such architecture allows the model to accomplish the segmentation tasks with efficient cost 
of computing resources. 

3.2 Mask R-CNN and Cascade R-CNN 
Mask R-CNN [8] is a kind of region-based convolutional neural networks and is built on the top of 

Faster R-CNN [7]. It is designed for image segmentation and was the state-of-the-art segmentation 
model in the past years. Based on the structure of Faster R-CNN which has two outputs for a class 
label and a bounding-box offset, Mask R-CNN introduces a third output that predicts the object mask 
(Figure 2c). It is realized by adding only a small overhead to Faster R-CNN, thereby making Mask R-
CNN efficient and simple to train. In particular, Mask R-CNN undergoes a two-stage procedure when 
doing the segmentation tasks. The model proposes multiple objects using the region proposal network 
(RPN) in the first stage, and outputs the predictions, including class, box offset, and mask for each 
region of interest pooling (RoI) in the second stage. 

Unlike Mask R-CNN which is originally designed for image segmentation, Cascade R-CNN is a 
deep learning model dealing with object detection problems [9]. This architecture aims to address the 
degrading performance with increased IoU thresholds due to overfitting during training. Considering 
the evaluation metric (mAP@.5:.95) in this competition, this model can be highly qualified for the 
segmentation task in this work. As shown in Figure 2d, different from Faster R-CNN using only one 
head in the second stage, different heads are used at different stages in Cascade R-CNN. Each of heads 
is designed for one specific IoU threshold from small to large. In particular, the cascaded regression 
in this model is a resampling procedure, which can provide good positive samples to the next stage. 
The architecture of Cascade R-CNN can also be applied to FPN, making this model able to deal with 
segmentation tasks when combining with the Mask R-CNN [10]. 

4. Workflow and Training SCHEDULE 
Schematic diagram of the Cascade Mask R-CNN model in this work is exhibited in Figure 3a. It 

can be found that a ResNeXt + FPN backbone is utilized in the first stage to extract feature maps and 
region proposals, where the ResNeXt part of backbone is ResNeXt-152-32x8d. In the second stage, a 
segmentation branch is added to each cascade stage to allow the Cascade R-CNN output mask 
predictions. The code of this model is implemented by Detectron2, which is a library of state-of-the-
art detection and segmentation algorithms and is provided by Facebook AI Research [17]. 

The training schedule of this model is summarized in Figure 3b and briefly introduced here. A pre-
training process is firstly conducted using the LIVEcell dataset to obtain appropriate pretrained model 
weights. In particular, despite that there are 9 kinds of neuronal cells in this dataset, we regard all 
neuronal cells as one kind and make the model deal with a 1-class segmentation task. All data in the 
training set are used for training (without evaluation set) in the pre-training process. The training is 
realized by 8 × RTX 3090 Nvidia GPU, and lasts 5000 iterations with a cosine annealing schedule of 
learning rate [18]. Here, we set the max (initial) learning rate max 0.005η =  and minimum learning 
rate 5

min 10η −= . The period of this scheduler Tmax = 200. When applying this scheduler, the learning 
rate tη  at each iteration is expressed as: 

.                    (4) 

Where Tcur is the number of current iteration. The weight of the final iteration is chosen as the 
pretrained weight for the next process. 

After that, we utilize the competition dataset to train our model. 80% data is used for training and 
the other 20% is used for evaluation. The model in this process is trained to accomplish a 3-class (cort, 
astro, and shsy5y) segmentation task, where the training method is the same with that in the pre-
training process. Considering that the amount of unlabeled data is much larger than labeled data in the 
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competition dataset, pseudo-label technique [19] is applied as a semi-supervised approach to improve 
the model performance. In detail, we use the trained model to generate predicted masks on these 
unlabeled microscope images. Next,  

 
Figure 3: (a) Schematic diagram of the Cascade Mask R-CNN model in this work, using a ResNeXt 
+ FPN backbone in the first stage and cascade blocks in the second stage. (b) The training schedule 

of our model, which is composed of three processes, i.e., pre-training, training, and re-training, 
respectively. LIVEcell dataset is used in the pretraining process, while the competition dataset is 
used in the other two processes. Pseudo-label technique is applied in the re-training process to 

improve the model performance. 
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These unlabeled data with predicted masks are added to the training set to re-train our model, 
leading to the model with best performance for the instance segmentation of neuronal cells. 

5. Results and Model Performance 

 
Figure 4: (a) The evolution of mask loss in the training process. (b) Performance of our model on the 

private test set (leaderboard score), where the benchmarks for gold, silver, and bronze medals are 
also given. (c) Image in the test set and corresponding predicted mask. 

To examine the model convergence of this Cascade Mask R-CNN model, we show the evolution 
of mask loss in the training process in Figure 4a. It can be found that the loss can finally reach a small 
steady value, suggesting that our model performs well on the training set. Next, the performance of 
our model on the private test set (leaderboard score) is given in Figure 4b, where the benchmarks for 
gold, silver, and bronze medals are also given. The result shows that the performance of our model 
without the boost of pseudo-label technique (0.326) can surpass the bronze benchmark. Moreover, 
after applying the pseudo-label technique, this model reaches an mAP@.5:.95 score 0.338. Such a 
score ranks 36/1505 (top 3%) in the leaderboard of Sartorius - Cell Instance Segmentation competition 
[15], and can get a silver medal in this Kaggle competition. In addition, to demonstrate the model 
performance more intuitively, we show the predicted mask on a sample image in the test set in Figure 
4c. It can be found that most cells in this image are appropriately segmented, indicating that our 
Cascade Mask R-CNN model can be qualified for the instance segmentation of neuronal cells in 
microscopic images. 

6. Conclusion 
In summary, by combining Mask R-CNN and Cascade R-CNN, we use the Cascade Mask R-CNN 

model to successfully develop an automated deep learning approach for the instance segmentation of 
neuronal cells in microscopic images with a promising performance. By a boost from the pseudo-label 
technique, our model can achieve a mAP@.5:.95 score 0.338 on the private test set in the Sartorius - 
Cell Instance Segmentation competition. Such a score ranks 36/1505 (top 3%) in the leaderboard, and 
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can get a silver medal in this Kaggle competition. Our results could help the researchers measure the 
effects of neurological disorders more easily, and potentially accelerate the discovery and development 
of new drugs for the treatment of neurodegenerative diseases. 
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